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SUMMARY 

A two-dimensional (in-plane) numerical model for surface waves propagation based on the non-linear 
dispersive wave approach described by Boussinesq-type equations, which provide a n  attractive theory for 
predicting the depth-averaged velocity field resulting from that wave-type propagation in shallow water, is 
presented. The numerical solution of the corresponding partial differential equations by finite-difference 
methods has been the subject of several scientific works. In the present work we propose a new approach to 
the problem: the spatial discretization of the system composed by the Boussinesq equations is made by 
a finite element method, making use of the weighted residual technique for the solution approach within 
each element. The model is validated by comparing numerical results with theoretical solutions and with 
results obtained experimentally. 

KEY WORDS Shallow water Boussinesq equations Finite element method Solitary wave 

1. INTRODUCTION 

The knowledge of the flow characteristics associated with waves, tides and currents and its 
dependence relative to coastal geometry is of vital concern to coastal work, to forecast the 
consequent modifications on established agitation and for the movement of coastal sediment. 

It is well known that only a non-linear dispersive wave theory is able to represent rigorously 
the long-term history of real flows in shallow-water conditions. 

For the solution of non-linear dispersive waves described by Boussinesq-type equations, 
several finite-difference methods in one space dimension have been used.'-5 However, in finite 
element methods both in one and two space dimensions, the solution of these equations is 
extremely limited, and that which is available is restricted, in so far as is known by the writers, to 
a horizontal bottom.6 

The purpose of this paper is to present an alternative approach to the several developed 
models, based on the finite element method, to obtain the numerical solution of the Boussinesq- 
type equations in a domain with arbitrary bathymetry and any geometry. 
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2. FORMULATION 

Taking into account the stresses at the bed, an extension of the Boussinesq equations may be 
obtained from the fundamental equations of the fluid mechanics relating to a three-dimensional 
and quasi-irrotational flow of a viscous fluid. 

Proceeding by suitable dimensionless variables of these equations, written in Euler’s variables, 
and defining the dimensionless quantities E = A/ho and D = ho/l ,  in which A is a characteristic wave 
amplitude, ho is the mean water depth and E is a characteristic length, we obtain the continuity 
equation. 

Accepting, after that, the fundamental hypothesis of the shallow-water theory (ho/l -g 1) and 
developing the dependent variables in power series of the small parameter D’ we obtain, after 
some algebraic manipulations, the momentum equations in second approach (order 2 in a’). 

Finally, assuming that the ratio of a typical measure of the wave height A to the mean water 
depth ho is small, i.e. with the relative elevation of the surface due to the waves having a value 
close to the square of the relative depth, 

where U is the Ursell number, we obtain, with dimensional variables and accepting a time- 
invariable bathymetry, the following governing equation ~ys t em:~  

h,+(hU),+(hzi),=O, 

in which h is the total water depth, H the initial water level, U the dimensional horizontal mean 
velocity throughout the Ox direction, 6 the dimensional horizontal mean velocity throughout 
the Oy direction, 5 the bed elevation, t the dimensional time and x and y are dimensional 
distances. 

3. NUMERICAL MODEL 

The numerical model is based on the finite element method for the spatial discretization of the 
partial differential equations, making use of the weighted residual technique for the solution 
approach within each element. 

3.1. Numerical procedure 

(1) takes the following form: 
Grouping the derivatives in time of the momentum equations in a single term, equation system 

h, + h i ,  + Uh, + hfiy + zih, = 0, 
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rt =- UU, - 51.7~ -g(h ,  + 5,) + w(Ux, + iYy) - zx(<), 

s, =- Uv,- tEy - g(h, + (,)+ V(CXX+ i7yy)-zy(<) ,  

(U,, + Uyy) - (H-5) ( H  - &,U - (H  - t ) ( H  - (),U, - W-O2 
2 

U-- 
3 

-- ( H  - t ) ( H - < ) x f i x - -  [ ( H -  ~ ) y U x + ( H - 5 ) x , i i ]  =s, 
2 2 

steps: 

0) 

(ii) 

(iii) 

(iv) 

where ~ x ( ~ ) = g U J ( U ~ + + ~ ) / ( k ~ h ~ / ~ )  and t y ( ( ) = g 5 J ( U 2  + 1 7 ~ ) / ( k ~ h ~ / ~ )  are the classical steady- 
state Manning-Strickler formulas. 

In order to solve this set of equations, we use a numerical procedure based on the following 

Assuming that all values are known up to and including n At, the first equation allows us to 
predict the variable values h, at time (n+ 1)At. 
The second and third equations make it possible to predict the variables values r, and s, at 
time (n+ ])At, taking into account the values hf+A''2 =(h'+hk+A')/2,  Ut, f i t ,  r t  and s' known 
in the whole domain. 
The fourth and fifth equations make it possible to compute the mean-averaged velocities 
U and I7 at time (n+ l)At,  taking into account the predicted values rp and s,. 
The first two operations are repeated in order to improve the accuracy of the variables h, 
I and s, using the values Y,, s,, h t + A t / 2  - - (h t+  h;+At)/2, U ' + A f / 2  = ( U t  + U f + A t  ) / 2  and 

)/2 known in the whole domain. f i t + A f / 2  = (ct+ cf + A f  

3.2. Development of the method 

The finite element method is based on the approach of well-behaved functions, in the present 
case water-depth- and mean-averaged velocities, being defined over small regions of finite 
dimensions (called finite elements) into which the problem domain is subdivided. 

If Ae is a generic element, the functions h, U and V are approximated within each element by: 

hz:h^= 2 &hi, 
i =  1 

n 

U=.ti= c NUi, 

V z v * =  1 lqvi, 

i = l  

n 

i =  1 

where hi ,  Ui and Vi are the function values at the nodal points and N represents linearly 
independent prescribed functions, usually polynomials. 

Applying the weighted residual technique, Galerkin's procedure, for error minimization, we 
construct firstly the residual Ri;  then, the approximate solution is selected in such a way that the 
weighting functions 6 are assumed to be equal to a combination of the shape functions N , .  Thus, 
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the error minimization equation is written as 

RjF4$dAe=0, 

with W,=cy=l NiS& where 64i are arbitrary coefficients. 

equation, we obtain 
Applying the Galerkin method to the first residual R1, which results from the continuity 

r r n  n n 

These equations may be written in matrix form as follows: 

Ah, + Bh = 0, 

with 
P 

u ~ , ~ =  NNjdAe, i , j = l , n ,  J 

+J (Nk),UkNiN,dAe+J Nkukh$(NJ),dAe, i,j, k = l , n .  
A* A' 

The solution of equation system ( 3 )  provides the values of the nodal unknowns hi.  It may be 
solved using the following scheme: 

or 

with 0.5 I < 1. 
The resulting matrix, although unsymmetric, is very sparse; so, we need to use an effective 

computer program for the solution of large, sparse and unsymmetric systems of linear equations 
as presented in Gupta and Tanji' or Hood.g 

A similar sequence of calculations is performed for the remaining residuals R2 to R5, noting 
that the second derivatives can be reduced by one using integration by parts (or Green's theorem). 

The boundary integrals resulting after application of the Green's theorem to reduce the second 
derivatives in the R4 and R ,  residuals will only be needed if at least one of the element sides 
coincides with part of an external boundary with natural boundary conditions of the type 
I TI, # 0. Otherwise, it should not be considered. 
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The essential boundary conditions of the type q= V,, may be introduced in the final system, 
after adding up the contributions from all elements and all sides with natural boundary 
conditions, by eliminating the rows corresponding to the prescribed unknowns and inserting the 
contributions of those prescribed unknowns on the right-hand side. 

A variety of different elements may be used. However, here are used elements of the isoparamet- 
ric family, which is a group of elements in which the shape functions are used to define the 
geometry as well as the depth-averaged velocity field. 

We make use of the natural co-ordinate system ( 5 ,  q)  which allows us to use elements with 
curvilinear shapes. Therefore, an element of area dx dy is calculated by the expression 
dx dy = det J d( dq, where det J is the determinant of the Jacobian matrix J :  

which is evaluated, and its determinant, at  the integration points. 

evaluate the one- and two-dimensional integrals in both ( and q directions. 
In all such situations we have chosen a numerical three-point Gauss-Legendre quadrature to 

4. COMPUTATIONAL TESTS 

4.1. Model comparisons with analytical solution 

In order to validate the proposed numerical model, some experiments were performed and 
compared with the known analytical solution. 

Figures 1 and 2 show two of these experiments. Both cases represent a solitary wave travelling 
along a horizontal no-friction rectangular channel of 100 m length. Numerical results are 
compared with the analytical solution for the solitary wave obtained by Boussinesq:" 

h(x, t ) = H +  A sech2{ J(3A/4H3)(x-,/'[y(H+ A)]t)+xo}, 

t =  0.0 s 

-- 
/7, 

\ 
t=20.0 s 

i I I 
O m  25.0 m 50.0 m 75.0 rn 100 
h / H  = 0.10 

AnaLyt [ c a t  solul [ o n  
_ - _ _ _ _ _ _  Numericat r e s u l t s  

Figure 1. Solitary wave computation ( A / H =  0.10) 
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Figure 2. Solitary wave computation (A /H = 0.25) 
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Figure 3(a). Installed depth gauges, bottom configuration and initial solitary wave position 
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Figure 3(b). Solitary wave travelling over a step 010 m high (05H). Numerical results for gauges 1-4 
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where A is the wave amplitude, H = 1.0 m is the undisturbed water depth for t = O  s and xo is the 
initial position of the crest (xo = 22.0 m and xo = 17.0 m for the first and second experiments, 
respectively). The channel was divided into eight-node quadrilateral elements of uniform length 
equal to 1.0 m. 

The results shown in Figure 1 are for a wave with A/H=0.10, while Figure 2 shows the 
comparison for the ratio A/H=0.25 .  Both computations were carried out with At=0.10 s. 

The agreement between the results obtained with the Boussinesq solution is perfect as much in 
wave amplitude as in phase for the ratio A/H = 0.10; a slight loss in phase accuracy and in wave 
height is presented for the higher ratio A/H =025.  Nevertheless, in both cases the dispersive 
waves are inconsiderable and the wave forms exhibit no important distortions. 

4.2.  Model comparisons with experimental data 

In order to see the ability of the present numerical model to predict the effect in irregular 
bottom situations, the model has been applied to a solitary wave travelling along a two-level 
no-friction rectangular channel, having a step 0.10 m high located 6.0 m from the initial section. 
The channel was 15 m long and four depth gauges were located at 6.0,9.0, 12.0 and 15.0 m from 
the initial section of the channel. For this situation a set of data measurements is available, 
performed by the authors at the ‘Institut de Mecanique de Grenoble’ (IMG), France. 

Figure 3 shows the results for the following parameters: 

wave amplitude, A = 0.0365 m; 
undisturbed water depth for t = 0 s, H = 0.20 m before the step; 
initial position of the crest wave, xo = 3.0 m. 

The results computed by this model show a good agreement with the measured data. In fact, 
the phase accuracy is perfect and the computational wave amplitudes recorded are the following: 

first transmitted wave, 
second transmitted wave, 
third transmitted wave, 

A l  =0.0560 m (0.0531 m); 
A2 = 0.0204 m (0.0180 m); 
A3 =04040 m (0.0033 m) 

(the experiment measured data in brackets). 

Finally, two computational three-dimensional results are compared with the ones obtained 
experimentally, also performed by the authors at IMG. The first experiment consisted of 
a solitary wave overpassing a strait, as presented in Figure 4. 

I I  

1 + 2 + 
3 
4 

4 5 + 4 
6 
+ t  

em 
15.5 

. I  + 
1210 I-I I 

244 .0 27.5 27.5 18.0 55.0 cm 

Figure 4. Model plan and installcd depth gauges for a solitary wave overpassing a strait 
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The measuring and acquisition equipment employed was composed of six depth gauges 
connected to an acquisition system, which allowed each measuring channel to receive 50 values 
per second. 

Five water surfaces computed at times t ,  = 1 .O s, t 2  = 1.5 s, t ,  = 2.0 s, t ,  = 2-5 s and is = 3.0 s are 
shown in Figure 5, where the closest wall of the channel was removed for better visualization. 
Figure 6 shows the comparison between the computed and measured results for the parameters: 

undisturbed water depth, H=0.15 rn; 
wave amplitude, A =0.0375 m: 

Figure 5. Three-dimensional perspective view of free-surface elevation for a solitary wave overpassing a strait, in time 
sequence. Vertical lines represent the farthest wall of the channel 
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Portion o f  the channel represented above 

Figure 5. (Continued) 

initial position of the crest wave, xo = 1.50 m; 
(x, y)  co-ordinates of the six depth gauges (in metres): gauge 1 =(3.940, 0.275), 
gauge 2 =(4.215,0.275), gauge 3 =(4-215,0.150), gauge 4=(4-490,O-275), gauge 5 =(4-670,O-275) 
and gauge 6 = (5220,0275). 

As we can see, the results are in good agreement both for wave height and for phase accuracy. 
The second experiment consisted of a solitary wave overpassing a vertical circular cylinder. 

This is done in a channel 0-55 m wide. The cylinder, with 16cm of diameter, is held fixed 
symmetrically in the centre of a channel and pierces the free surface (Figure 7). 
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Figure 6. Comparison between numerical and experimental results for a solitary wave overpassing a strait 
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Figure 7. Model plan and installed depth gauges for a solitary wave overpassing a vertical circular cylinder 
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Figure 8. Three-dimensional perspective view of free-surface elevation for a solitary wave overpassing a vertical circular 
cylinder, in time sequence. Vertical lines represent the cylinder and the farthest wall of the channel 
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We have employed six depth gauges located at the (x, y )  co-ordinates (in metres): gauge 1 = 
(4.220,0.275), gauge 2 = (4.320,O. 170), gauge 3 =(4.320,0.045), gauge 4 = (4.420,0.275), gauge 5 = 
(4.795,0.275) and gauge 6=(5.195,0.275). Figure 8 shows four half portions of the domain at 
times t l  = 1.0 s, t 2  = 1.5 s, t3  =2.0 s and t4 =2.5 s for the following parameters: 

undisturbed water depth, H = 0.1 5 m; 
wave amplitude, A =0.0375 m; 
initial position of the crest wave, xo =2.025 m. 

As was the case in Figure 5, the closest wall of the channel was also removed. 
The comparison between the computed and measured results is presented in Figure 9. 
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4 I I I 
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Figure 9. Comparison between numerical and experimental results for a solitary wave overpassing a vertical circular 
cylinder 
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Excluding the gauge immediately behind the cylinder, which is not understandably good (the 
motion is assumed irrotational), the others agreed reasonably with measured data. 

5 .  CONCLUSIONS 

The developed model permits simulation of wave propagation in shallow-water conditions 
whenever the ratio A/H is not very high (A/H I 0.4-0.5); this limitation follows basically from the 
Boussinesq-type equations, and not so much from the numerical method used.’ I 

The model can be employed in any geometry, under complicated boundary conditions, and 
with arbitrary bathymetry, without any additional computational effort. 

The accuracy of the developed model seems to be, for the same equations, higher than explicit 
finite-difference models and it only sustains comparison with implicit finite-difference models. 

The comparison between this model with a finite-difference one, both in one space dimension 
and utilizing the same numerical procedure described in Section 3.1, shows that the finite- 
difference model is 3 to 4 times faster than the present one, for the same precision. However, 
despite requiring more computational effort, in practical treatment of real situations (arbitrary 
geometry, important bathymetric irregularity, different local resolution of the computational 
grid, etc.) this inconvenience is frequently overshot because less points are normally necessary. 
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